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TENNLab
• Four PIs at UTK:

— Dr. Ahmed Aziz (Devices)
— Dr. Garrett Rose (Architectures and 

Devices)
— Dr. Jim Plank (Software and 

Applications)
— Dr. Katie Schuman (Algorithms and 

Applications)

• Affiliated faculty at:
— SUNY Polytechnic
— George Mason University
— University of Mississippi
— Florida International University
— Oak Ridge National Laboratory

• Since 2015:
— 12 Master’s and 7 PhD graduates
— Alumni at Tesla, Garmin, Intel, Cisco, 

Amazon, Micron, TI, Microsoft, Google, 
Facebook, SalesForce https://neuromorphic.eecs.utk.edu/



Why should you care 
about novel brain-
inspired computer 

architectures?



?

Looming End of 
Moore’s Law 

(And the end of Dennard scaling)

Artificial 
Intelligence 

and 
Machine Learning

Rise of the 
Internet of Things



Neural Hardware and Neuromorphic Computing
Neural Hardware

Accelerates 
traditional 
neural network 
and deep 
learning 
computation

• Well-suited to existing algorithms
• Fast computation or low power
• Currently deployed in cloud or 

mobile devices
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Neural Hardware and Neuromorphic Computing
Neural Hardware

Accelerates 
traditional 
neural network 
and deep 
learning 
computation

• Well-suited to existing algorithms
• Fast computation or low power
• Currently deployed in cloud or 

mobile devices

Neuromorphic Computing
Implements 
spiking recurrent 
neural network 
computation and 
can be suitable for 
neuroscience 
simulation

• Significant promise for future 
algorithmic development 

• Fast computation and low power
• Still in development



Spiking Neural Networks

• Time component 
on neurons and  
synapses

• More complex 
network 
structures than 
feed-forward, 
but typically not 
fully connected

• Temporal 
input

• Temporal 
output



Spiking Neural Networks
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What does a neuromorphic computer look like?
Neuron

Synapse

Massively 
Parallel

Extremely
Low Power

Event 
Driven

Collocated 
Processing 

and Memory



Examples of Neuromorphic Systems

SpiNNaker
University of 
Manchester

TrueNorth
IBM

Loihi
Intel

BrainScaleS
Heidelberg 
University

Neuroscience-Driven Computation-Driven

Image Sources:
SpiNNaker: https://www.researchgate.net/figure/A-SpiNNaker-board-with-48-chips-SpiNN-5_fig1_301559712
BrainScaleS: https://www.kip.uni-heidelberg.de/vision/outreach/images/
TrueNorth: https://www.top500.org/news/ibm-finds-killer-app-for-truenorth-neuromorphic-chip/
Loihi: https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html

https://www.researchgate.net/figure/A-SpiNNaker-board-with-48-chips-SpiNN-5_fig1_301559712
https://www.kip.uni-heidelberg.de/vision/outreach/images/
https://www.top500.org/news/ibm-finds-killer-app-for-truenorth-neuromorphic-chip/
https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html


Neuromorphic Hardware Research

G. Chakma, et al, "Memristive Mixed-Signal Neuromorphic Systems: Energy-Efficient 
Learning at the Circuit-Level," in IEEE Journal on Emerging and Selected Topics in Circuits 
and Systems, vol. 8, no. 1, pp. 125-136, March 2018.

Buckley, Sonia, et al. "Design of superconducting optoelectronic networks for 
neuromorphic computing." In 2018 IEEE International Conference on Rebooting 
Computing (ICRC), pp. 1-7. IEEE, 2018.

Najem, Joseph S., et al. "Memristive ion channel-doped biomembranes as synaptic 
mimics." ACS nano 12, no. 5 (2018): 4702-4711.

Neuromorphic device research includes 
metal-oxide memristors, 

superconducting optoelectronics, and biomimetic devices 



Neuromorphic Computing “Stack”

Materials

Devices

Microarchitecture

System Architecture/Organization

System Software and Communications

Algorithms

Applications

My Research

Influences



How do you program 
a neuromorphic 

computer?



Spiking Neural Networks!



“Programming” via Spiking Neural Networks

Machine 
Learning 

Algorithm
Data

Simulation 
Environment



Algorithms: Back-Propagation-Like 
Approaches
• Dense connectivity

• Algorithm adaptations for:
– Non-differentiability of spiking 

neurons
– Low precision weights
– Non-standard approach to delays

Error
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Algorithms: Back-Propagation-Like 
Approaches
• Dense connectivity

• Algorithm adaptations for:
– Non-differentiability of spiking 

neurons
– Low precision weights
– Non-standard approach to delays

Error

Key Advantage:
Decades of knowledge about 

traditional ANNs

Key Disadvantage:
Doesn’t work natively on many 

features of SNNs



Algorithms: Synaptic Plasticity



Algorithms: Synaptic Plasticity

Key Advantage:
Biologically-inspired and 

unsupervised



Algorithms: Synaptic Plasticity

Key Advantage:
Biologically-inspired and 

unsupervised

Key Disadvantage:
Not well understood and not 

scalable



Random 
Initialization

Parents

SelectEvaluate
and Rank

Ordered Population

Best

Worst

Reproduce

Child 
Population

EONS: Evolutionary Optimization for Neuromorphic Systems



Why Evolutionary Optimization?
• Applicable to a wide variety of tasks

• Applicable to different architectures and devices

• Operates within the characteristics and constraints of the 
architecture/device

• Can learn topology and parameters (not just synaptic weights)

• Can interact with software simulations or directly with hardware

• Parallelizable/scalable on HPC



“Programming” via Spiking Neural Networks

Machine 
Learning 

Algorithm
Data

Simulation 
Environment

Hand-Tooled 
Rules or 
Manual 

Construction



Neuromorphic as a 
Co-Processor on HPC



Example Neuromorphic Use Cases on HPC
In-Situ Data Analysis Training for Deployment Non-Neural Network 

Co-Processor

Neuromorphic 
Processor

Modeling and 
Simulation on 

GPU/CPU

DataActions

Real-Time 
Analysis

Task Neuromorphic 
Processor

SNN Neuromorphic 
Processor

SNN

CPU



Example Neuromorphic Use Cases on HPC
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Data from MINERvA
(Main Injector Experiment for v-A)

• Neutrino scattering experiment at Fermi 
National Accelerator Laboratory

• The detector is exposed to the NuMI
(Neutrinos at the Main Injector) neutrino 
beam

• Millions of simulated neutrino-nucleus 
scattering events were created

• Classification task is to classify the 
horizontal region where the interaction 
originated

Source: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017.



Best Results: Single View
x-view 

(127x50)
conv1 
(8x3)

pool1 
(2x1)

conv2 
(7x3)

pool2 
(2x1)

conv3 
(6x3)

pool3 
(2x1)

conv4 
(6x3)

pool4 
(2x1)

fc1 
(196)

Convolutional Neural Network Result: ~80.42%

drop 
out

fc2 
(98)

drop 
out

fc3 
(11)

classification

Spiking Neural Network Result: ~80.63%

Source for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017.

• 90 neurons, 86 synapses

• Estimated energy for a single 
classification for mrDANNA
implementation: 1.66 μJ



Neuromorphic Engine Control for Fuel Efficiency
• Developed a complete workflow to train a spiking neural network 

(SNN) to deploy to an FPGA-based neuromorphic hardware system 
for internal combustion engine control.   

• SNN-based approach outperforms fixed control strategies in terms of 
fuel efficiency in simulation while still meeting acceptable 
performance metrics.

• Currently deploying SNN trained on Summit to neuromorphic 
hardware in-the-loop with engine at National Transportation Research 
Center.

Internal 
Combustion 

Engine

EONS 
Training on 

Summit

Closed Loop 
Control

SNN to 
evaluate

Fitness
Score

Trained SNN 
for 

Deployment

Observations

Action

Catherine D. Schuman, Steven R. Young, J. Parker Mitchell, J. Travis Johnston, Derek Rose, Bryan P. Maldonado, Brian C. Kaul. “Low Size, Weight, and Power 
Neuromorphic Computing to Improve Combustion Engine Efficiency.” International Conference on Green and Sustainable Computing 2020.  



Neuromorphic Engine Control for Fuel Efficiency



Neuromorphic Radiation Detection
• Radiation detection algorithms must be able to detect low-SNR anomalies in a very 

noisy and dynamic data environment.

• Neuromorphic computing enables the ability to combine the computational 
performance of machine learning with massive reductions in power consumption for 
this task

• K-sigma performance on DOE Urban Search Challenge: F1-Score: 0.080

• Current SNN trained with EONS performance: F1-Score: 0.436

EONS 
Training

DOE Urban 
Search 

Challenge 
Dataset

SNN to 
evaluate

Fitness
Score

Trained SNN 
for 

Deployment

James Ghawaly, Aaron Young, Brett Witherspoon, Dan Archer, Nick Prins and Catherine Schuman.  “A Neuromorphic Algorithm for Radiation 
Anomaly Detection.” In preparation. 



F1Tenth: Autonomous Racing
• Fully autonomous 1/10th 

scale racing of Formula 
One (https://f1tenth.org/)

• Like full scale vehicles, 
the need for low size, 
weight, and power is 
critical

• Relatively inexpensive 
real-world demonstration 
of what neuromorphic 
computing can provide

Slamtec RLIDAR A3

Power Distribution Board

UM7 IMU Board

μCaspian

Nvidia Jetson TX2

Traxxas Ford Fiesta Chassis and Drivetrain



F1Tenth: Autonomous Racing

F1Tenth 
Simulator

EONS-
Produced 

SNNs

SNN input:
LIDAR 

Sensors

SNN 
output:

Steering 
Angle, 
Speed

Jetson

uCaspian

Best Evolved SNN

LIDAR Sensors

Steering Angle, Speed

• We use EONS to train SNNs for uCaspian
deployment using the F1Tenth Simulator.

• We deployed the trained SNN to a Jetson first 
(CPU will simulate uCaspian) and then to the 
actual uCaspian to control the physical car.



Training Tracks



Physical Deployment

Robert Patton, Catherine Schuman, Shruti R. Kulkarni, John Mitchell, N. Quentin Haas, Christopher Stahl, Spencer Paulissen, Prasanna Date, Thomas Potok, Shay Snyder and Maryam Parsa, 
“Neuromorphic Computing for Autonomous Racing.” International Conference on Neuromorphic Systems (ICONS) 2021.  



Physical Deployment



Example Neuromorphic Use Cases on HPC
In-Situ Data Analysis Training for Deployment Non-Neural Network 

Co-Processor

Neuromorphic 
Processor

Modeling and 
Simulation on 

GPU/CPU

DataActions

Real-Time 
Analysis

Task Neuromorphic 
Processor

SNN Neuromorphic 
Processor

SNN

CPU



Properties of Spiking Neuromorphic Systems
• Massively parallel computation
• Collocated processing and memory
• Simple processing elements that perform specific computations
• Simple communication between elements
• Event driven computation
• Stochastically firing neurons for noise
• Inherently scalable architectures

These properties are useful for more than just machine learning algorithms!



Calculating Shortest Paths

• Graphs are converted 
into networks

• Distances are converted 
to delays

• Spikes travel throughout 
the network and give 
single-source shortest 
path lengths

Schuman, Catherine D., Kathleen Hamilton, Tiffany Mintz, Md Musabbir Adnan, Bon Woong Ku, Sung-Kyu Lim, and Garrett S. Rose. "Shortest 
path and neighborhood subgraph extraction on a spiking memristive neuromorphic implementation." In Proceedings of the 7th Annual Neuro-
inspired Computational Elements Workshop, pp. 1-6. 2019.



Sparse Binary Matrix-Vector Multiplication

• We demonstrated 
that binary matrix-
vector multiplication 
can be computed 
using networks of 
spiking neurons 
• Next steps: Evaluate 

on real neuromorphic 
hardware

Catherine D. Schuman, Bill Kay, Prasanna Date, Ramakrishnan Kannan, Piyush Sao, and Thomas E. Potok. "Sparse Binary Matrix-Vector 
Multiplication on Neuromorphic Computers." GrAPL 2021: Workshop on Graphs, Architectures, Programming, and Learning, 
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Modeling Epidemic Spread

• Neurons are individuals in a 
population

• Synapses are shared social 
connections

• Spikes are transmission of 
infection

• Parameters allow for different 
conditions

Kathleen Hamilton, Prasanna Date, Bill Kay, and Catherine Schuman D. "Modeling epidemic spread with spike-based models." 
In International Conference on Neuromorphic Systems 2020, pp. 1-5. 2020.



Graph Neural Networks

• Node classification task, without features
— Citation networks as benchmark datasets for GNNs

Cora Citeseer Pubmed

Node2Vec 0.71 0.48 0.70

Node2Vec-a 0.68 0.51 -

Planetoid-G 0.69 0.49 0.66

GraphSAGE 0.71 0.48 0.64

GCN 0.59 0.34 0.42

Neuromorphic 0.67 0.51 0.79

Guojing Cong, Seung-Hwan Lim, Shruti Kulkarni, Prasanna Date, Thomas Potok, Shay Snyder, Maryam Parsa, and Catherine Schuman. 
2018. Semi-Supervised Graph Structure Learning on Neuromorphic Computers. In Proceedings of International Conference on 
Neuromorphic Systems (ICONS ’22). ACM, New York, NY, US



Summary

• Neuromorphic computers are a new type of computer inspired by 
biological brains

• They are “programmed” using spiking neural networks, a more 
biologically inspired neural network

• We have successfully applied neuromorphic to a wide variety of 
applications, including scientific data analysis and robotics 

• Neuromorphic computers are useful for more than just neural network 
computation!



Looking for postdoc or graduate 
opportunities?

• We’re actively recruiting Master’s and PhD students across the 
TENNLab research group

• We are also recruiting postdocs specifically in software, algorithms, 
and application development

Dr. Ahmed Aziz Dr. Garrett Rose Dr. Jim Plank Dr. Katie Schuman



Work supported by:

Department of Energy

Air Force Research Lab



Thank you!

Questions?

Contact:
Email: cschuman@utk.edu

Website: catherineschuman.com

Twitter: @cdschuman


